{ "id": "1601.01626", "version": "v1", "published": "2016-01-07T18:04:39.000Z", "updated": "2016-01-07T18:04:39.000Z", "title": "$\\mathbb{B}$-valued monogenic functions and their applications to boundary value problems in displacements of 2-D Elasticity", "authors": [ "S. V. Gryshchuk" ], "categories": [ "math.AP" ], "abstract": "Consider the commutative algebra $\\mathbb{B}$ over the field of complex numbers with the bases $\\{e_1,e_2\\}$ such that %satisfying the conditions $(e_1^2+e_2^2)^2=0$, $e_1^2+e_2^2\\ne 0$. %$\\mathbb{B}$ is unique. Let $D$ be a domain in $xOy$, $D_{\\zeta}:=\\{xe_1+ye_2:(x,y) \\in D\\}\\subset \\mathbb{B}$. We say that $\\mathbb{B}$-valued function $\\Phi \\colon D_{\\zeta} \\longrightarrow \\mathbb{B}$, $\\Phi(\\zeta)=U_{1}\\,e_1+U_{2}\\,ie_1+ U_{3}\\,e_2+U_{4}\\,ie_2$, $\\zeta=xe_1+ye_2$, $U_{k}=U_{k}(x,y)\\colon D\\longrightarrow \\mathbb{R}$, $k=\\bar{1,4}$, is {\\em monogenic} in $D_{\\zeta}$ iff $\\Phi$ has the classic derivative in every point in $D_{\\zeta}$. Every $U_k$, $k=\\bar{1,4}$, is a biharmonic function in $D$. A problem on finding an elastic equilibrium for isotropic body $D$ by given boundary values on $\\partial D$ of partial derivatives $\\frac{\\partial u}{\\partial v}$, $\\frac{\\partial v}{\\partial y}$ for displacements $u$, $v$ is equivalent to BVP for monogenic functions, which is to find $\\Phi$ by given boundary values of $U_1$ and $U_4$.", "revisions": [ { "version": "v1", "updated": "2016-01-07T18:04:39.000Z" } ], "analyses": { "subjects": [ "30G35", "31A30", "74B05" ], "keywords": [ "boundary value problems", "valued monogenic functions", "displacements", "elasticity", "applications" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160101626G" } } }