{ "id": "1601.00946", "version": "v1", "published": "2016-01-05T19:54:37.000Z", "updated": "2016-01-05T19:54:37.000Z", "title": "Groups quasi-isometric to RAAG's", "authors": [ "Jingyin Huang", "Bruce Kleiner" ], "categories": [ "math.GR", "math.GT" ], "abstract": "We characterize groups quasi-isometric to a right-angled Artin group $G$ with finite outer automorphism group. In particular all such groups admit a geometric action on a $CAT(0)$ cube complex that has an equivariant \"fibering\" over the Davis building of $G$.", "revisions": [ { "version": "v1", "updated": "2016-01-05T19:54:37.000Z" } ], "analyses": { "keywords": [ "finite outer automorphism group", "right-angled artin group", "characterize groups quasi-isometric", "groups admit", "geometric action" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160100946H" } } }