{ "id": "1601.00943", "version": "v1", "published": "2016-01-05T19:27:36.000Z", "updated": "2016-01-05T19:27:36.000Z", "title": "Representation of large matchings in bipartite graphs", "authors": [ "Ron Aharoni", "Dani Kotlar", "Ran Ziv" ], "categories": [ "math.CO" ], "abstract": "Let $f(n)$ be the smallest number such that every collection of $n$ matchings, each of size at least $f(n)$, in a bipartite graph, has a full rainbow matching. Generalizing famous conjectures of Ryser, Brualdi and Stein, Aharoni and Berger conjectured that $f(n)=n+1$ for every $n>1$. Clemens and Ehrenm{\\\"u}ller proved that $f(n) \\le \\frac{3}{2}n +o(n)$. We show that the $o(n)$ term can be reduced to a constant, namely $f(n) \\le \\lceil \\frac{3}{2}n \\rceil+1$.", "revisions": [ { "version": "v1", "updated": "2016-01-05T19:27:36.000Z" } ], "analyses": { "keywords": [ "bipartite graph", "large matchings", "representation", "smallest number", "full rainbow matching" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160100943A" } } }