{ "id": "1601.00889", "version": "v1", "published": "2016-01-05T16:23:10.000Z", "updated": "2016-01-05T16:23:10.000Z", "title": "Scaling limits for sub-ballistic biased random walks in random conductances", "authors": [ "Alexander Fribergh", "Daniel Kious" ], "categories": [ "math.PR" ], "abstract": "We consider biased random walks in positive random conductances on the d-dimensional lattice in the zero-speed regime and study their scaling limits. We obtain a functional Law of Large Numbers for the position of the walker, properly rescaled. Moreover, we state a functional Central Limit Theorem where an atypical process, related to the Fractional Kinetics, appears in the limit.", "revisions": [ { "version": "v1", "updated": "2016-01-05T16:23:10.000Z" } ], "analyses": { "subjects": [ "60K37", "82D30" ], "keywords": [ "sub-ballistic biased random walks", "scaling limits", "functional central limit theorem", "large numbers", "fractional kinetics" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160100889F" } } }