{ "id": "1601.00443", "version": "v1", "published": "2016-01-04T10:36:24.000Z", "updated": "2016-01-04T10:36:24.000Z", "title": "On the dual code of points and generators on the Hermitian variety $\\mathcal{H}(2n+1,q^2)$", "authors": [ "Maarten De Boeck", "Peter Vandendriessche" ], "journal": "Adv. Math. Commun. 8 (2014), no. 3, 281-296", "doi": "10.3934/amc.2014.8.281", "categories": [ "math.CO" ], "abstract": "We study the dual linear code of points and generators on a non-singular Hermitian variety $\\mathcal{H}(2n+1,q^2)$. We improve the earlier results for $n=2$, we solve the minimum distance problem for general $n$, we classify the $n$ smallest types of code words and we characterize the small weight code words as being a linear combination of these $n$ types.", "revisions": [ { "version": "v1", "updated": "2016-01-04T10:36:24.000Z" } ], "analyses": { "subjects": [ "51E20", "51E22", "05B25", "94B05" ], "keywords": [ "dual code", "generators", "small weight code words", "non-singular hermitian variety", "minimum distance problem" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160100443D" } } }