{ "id": "1601.00440", "version": "v1", "published": "2016-01-04T10:23:05.000Z", "updated": "2016-01-04T10:23:05.000Z", "title": "Symmetric norms and the Leibniz property", "authors": [ "Zoltan Leka" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "We prove that symmetric norms on the space of bounded centered random variables, defined on uniform discrete spaces, have the strong Leibniz property. As an application, we shall obtain that the pth central seminorms on arbitrary probability spaces are strongly Leibniz.", "revisions": [ { "version": "v1", "updated": "2016-01-04T10:23:05.000Z" } ], "analyses": { "subjects": [ "15A60", "46N30", "60E15", "26A51", "60A99" ], "keywords": [ "symmetric norms", "arbitrary probability spaces", "pth central seminorms", "strong leibniz property", "uniform discrete spaces" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160100440L" } } }