{ "id": "1601.00314", "version": "v1", "published": "2016-01-03T17:26:48.000Z", "updated": "2016-01-03T17:26:48.000Z", "title": "Periodicity of cluster tilting objects", "authors": [ "Benedikte Grimeland" ], "comment": "32 pages. Comments welcome", "categories": [ "math.RT" ], "abstract": "Let T be a locally finite triangulated category with an autoequivalence F such that the orbit category T/F is triangulated. We show that if X is an m-cluster tilting subcategory, then the image of X in T/F is an m-cluster tilting subcategory if and only if X is F-perodic. We show that for path-algebras of Dynking quivers \\delta one may study the periodic properties of n-cluster tilting objects in the n-cluster category Cn(k\\delta) to obtain information on periodicity of the preimage as n-cluster tilting subcategories of Db(k\\delta). Finally we classify the periodic properties of all 2-cluster tilting objects T of Dynkin quivers, in terms of symmetric properties of the quivers of the corresponding cluster tilted algebras EndC_2(T)^op. This gives a complete overview of all 2-cluster tilting objects of all triangulated orbit categories of Dynkin diagrams.", "revisions": [ { "version": "v1", "updated": "2016-01-03T17:26:48.000Z" } ], "analyses": { "keywords": [ "cluster tilting objects", "periodicity", "m-cluster tilting subcategory", "periodic properties", "orbit category t/f" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160100314G" } } }