{ "id": "1601.00078", "version": "v1", "published": "2016-01-01T12:49:26.000Z", "updated": "2016-01-01T12:49:26.000Z", "title": "A Characterization of the Normal Distribution by the Independence of a Pair of Random Vectors", "authors": [ "Wiktor Ejsmont" ], "comment": "6 pages", "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "Kagan and Shalaevski 1967 have shown that if the random variables $X_1,\\dots,X_n$ are independent and identically distributed and the distribution of $\\sum_{i=1}^n(X_i+a_i)^2$ $a_i\\in \\mathbb{R}$ depends only on $\\sum_{i=1}^na_i^2$ , then each $X_i$ follows the normal distribution $N(0, \\sigma)$. Cook 1971 generalized this result replacing independence of all $X_i$ by the independence of $(X_1,\\dots, X_m) \\textrm{ and } (X_{m+1},\\dots,X_n )$ and removing the requirement that $X_i$ have the same distribution. In this paper, we will give other characterizations of the normal distribution which are formulated in a similar spirit.", "revisions": [ { "version": "v1", "updated": "2016-01-01T12:49:26.000Z" } ], "analyses": { "keywords": [ "normal distribution", "random vectors", "characterization", "similar spirit", "result replacing independence" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160100078E" } } }