{ "id": "1512.09356", "version": "v1", "published": "2015-12-31T19:58:38.000Z", "updated": "2015-12-31T19:58:38.000Z", "title": "On the Boundedness of The Bilinear Hilbert Transform along \"non-flat\" smooth curves. The Banach triangle case ($L^r,\\: 1\\leq r<\\infty$)", "authors": [ "Victor Lie" ], "comment": "25 pages, one figure. Submitted in Fall 2015", "categories": [ "math.CA" ], "abstract": "We show that the bilinear Hilbert transform $H_{\\Gamma}$ along curves $\\Gamma=(t,-\\gamma(t))$ with $\\gamma\\in\\n\\f$ is bounded from $L^{p}(\\R)\\times L^{q}(\\R)\\,\\rightarrow\\,L^{r}(\\R)$ where $p,\\,q,\\,r$ are H\\\"older indices, i.e. $\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{r}$, with $1