{ "id": "1512.09205", "version": "v1", "published": "2015-12-31T03:10:32.000Z", "updated": "2015-12-31T03:10:32.000Z", "title": "Multifractal analysis of the divergence points of Birkhoff averages in $beta$-dynamical systems", "authors": [ "Yuanhong Chen", "Zhenliang Zhang", "Xiaojun Zhao" ], "comment": "non", "categories": [ "math.DS", "math.NT" ], "abstract": "This paper is aimed at a detailed study of the multifractal analysis of the so-called divergence points in the system of $\\beta$-expansions. More precisely, let $([0,1),T_{\\beta})$ be the $\\beta$-dynamical system for a general $\\beta>1$ and $\\psi:[0,1]\\mapsto\\mathbb{R}$ be a continuous function. Denote by $\\textsf{A}(\\psi,x)$ all the accumulation points of $\\Big\\{\\frac{1}{n}\\sum_{j=0}^{n-1}\\psi(T^jx): n\\ge 1\\Big\\}$. The Hausdorff dimensions of the sets $$\\Big\\{x:\\textsf{A}(\\psi,x)\\supset[a,b]\\Big\\},\\ \\ \\Big\\{x:\\textsf{A}(\\psi,x)=[a,b]\\Big\\}, \\ \\Big\\{x:\\textsf{A}(\\psi,x)\\subset[a,b]\\Big\\}$$ i.e., the points for which the Birkhoff averages of $\\psi$ do not exist but behave in a certain prescribed way, are determined completely for any continuous function $\\psi$.", "revisions": [ { "version": "v1", "updated": "2015-12-31T03:10:32.000Z" } ], "analyses": { "subjects": [ "11K55", "28A80" ], "keywords": [ "birkhoff averages", "divergence points", "multifractal analysis", "dynamical system", "continuous function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151209205C" } } }