{ "id": "1512.08362", "version": "v1", "published": "2015-12-28T10:05:04.000Z", "updated": "2015-12-28T10:05:04.000Z", "title": "Path algebras of quivers and representations of locally finite Lie algebras", "authors": [ "J. Hennig", "S. J. Sierra" ], "comment": "30 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "We explore the (noncommutative) geometry of locally simple representations of the diagonal locally finite Lie algebras $\\mathfrak{sl}(n^\\infty)$, $\\mathfrak o(n^\\infty)$, and $\\mathfrak{sp}(n^\\infty)$. Let $\\mathfrak g_\\infty$ be one of these Lie algebras, and let $I \\subseteq U(\\mathfrak g_\\infty)$ be the annihilator of a locally simple $\\mathfrak g_\\infty$-module. We show that for each such $I$, there is a quiver $Q$ so that locally simple $\\mathfrak g_\\infty$-modules with annihilator $I$ are parameterised by \"points\" in the \"noncommutative space\" corresponding to the path algebra of $Q$. Methods of noncommutative algebraic geometry are key to this correspondence. We classify the quivers that arise and relate them to characters of symmetric groups.", "revisions": [ { "version": "v1", "updated": "2015-12-28T10:05:04.000Z" } ], "analyses": { "subjects": [ "17B65", "16W50", "16E50", "16G20", "16D90" ], "keywords": [ "path algebra", "diagonal locally finite lie algebras", "annihilator", "locally simple representations", "symmetric groups" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }