{ "id": "1512.08341", "version": "v1", "published": "2015-12-28T08:39:06.000Z", "updated": "2015-12-28T08:39:06.000Z", "title": "Counting components of an integral lamination", "authors": [ "S. Oyku Yurttas", "Toby Hall" ], "comment": "17 pages, 2 Figures", "categories": [ "math.GT" ], "abstract": "We present an efficient algorithm for calculating the number of components of an integral lamination on an $n$-punctured disk, given its Dynnikov coordinates. The algorithm requires $O(n^2M)$ arithmetic operations, where~$M$ is the sum of the absolute values of the Dynnikov coordinates.", "revisions": [ { "version": "v1", "updated": "2015-12-28T08:39:06.000Z" } ], "analyses": { "subjects": [ "57M50", "57N05", "20F36" ], "keywords": [ "integral lamination", "counting components", "dynnikov coordinates", "efficient algorithm", "arithmetic operations" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151208341O" } } }