{ "id": "1512.08264", "version": "v1", "published": "2015-12-27T19:34:40.000Z", "updated": "2015-12-27T19:34:40.000Z", "title": "Genus Fields of Congruence Function Fields", "authors": [ "Myriam Maldonado-Ramírez", "Martha Rzedowski-Calderón", "Gabriel Villa-Salvador" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "Let $k$ be a rational congruence function field and consider an arbitrary finite separable extension $K/k$. If for each prime in $k$ ramified in $K$ we have that at least one ramification index is not divided by the characteristic of $K$, we find the genus field $\\g K$, except for constants, of the extension $K/k$. In general, we describe the genus field of a global function field.", "revisions": [ { "version": "v1", "updated": "2015-12-27T19:34:40.000Z" } ], "analyses": { "subjects": [ "11R60", "11R58", "11R29" ], "keywords": [ "genus field", "rational congruence function field", "global function field", "arbitrary finite separable extension", "ramification index" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151208264M" } } }