{ "id": "1512.07669", "version": "v1", "published": "2015-12-23T23:59:32.000Z", "updated": "2015-12-23T23:59:32.000Z", "title": "Reinforcement Learning: Stochastic Approximation Algorithms for Markov Decision Processes", "authors": [ "Vikram Krishnamurthy" ], "categories": [ "math.OC" ], "abstract": "This article presents a short and concise description of stochastic approximation algorithms in reinforcement learning of Markov decision processes. The algorithms can also be used as a suboptimal method for partially observed Markov decision processes.", "revisions": [ { "version": "v1", "updated": "2015-12-23T23:59:32.000Z" } ], "analyses": { "keywords": [ "markov decision processes", "stochastic approximation algorithms", "reinforcement learning", "concise description", "suboptimal method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151207669K" } } }