{ "id": "1512.07272", "version": "v1", "published": "2015-12-22T21:45:15.000Z", "updated": "2015-12-22T21:45:15.000Z", "title": "Convexity with respect to families of means", "authors": [ "Gyula Maksa", "Zsolt Páles" ], "journal": "Aequationes Mathematicae 89(1) (2015), 161-167", "doi": "10.1007/s00010-014-0281-7", "categories": [ "math.CA" ], "abstract": "In this paper we investigate continuity properties of functions $f:\\mathbb{R}_+\\to\\mathbb{R}_+$ that satisfy the $(p,q)$-Jensen convexity inequality $$ f\\big(H_p(x,y)\\big)\\leq H_q(f(x),f(y)) \\qquad(x,y>0), $$ where $H_p$ stands for the $p$th power (or H\\\"older) mean. One of the main results shows that there exist discontinuous multiplicative functions that are $(p,p)$-Jensen convex for all positive rational number $p$. A counterpart of this result states that if $f$ is $(p,p)$-Jensen convex for all $p\\in P\\subseteq\\mathbb{R}_+$, where $P$ is a set of positive Lebesgue measure, then $f$ must be continuous.", "revisions": [ { "version": "v1", "updated": "2015-12-22T21:45:15.000Z" } ], "analyses": { "subjects": [ "39B62", "26D07", "26D15" ], "keywords": [ "jensen convexity inequality", "main results", "positive rational number", "th power", "positive lebesgue measure" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151207272M" } } }