{ "id": "1512.07213", "version": "v1", "published": "2015-12-22T19:39:47.000Z", "updated": "2015-12-22T19:39:47.000Z", "title": "Sasaki-Einstein metrics and K-stability", "authors": [ "Tristan C. Collins", "Gábor Székelyhidi" ], "comment": "56 pages", "categories": [ "math.DG" ], "abstract": "We show that a polarized affine variety admits a Ricci flat K\\\"ahler cone metric, if it is K-stable. This generalizes Chen-Donaldson-Sun's solution of the Yau-Tian-Donaldson conjecture to K\\\"ahler cones, or equivalently, Sasakian manifolds. As an application we show that the five-sphere admits infinitely many families of Sasaki-Einstein metrics.", "revisions": [ { "version": "v1", "updated": "2015-12-22T19:39:47.000Z" } ], "analyses": { "subjects": [ "53C25" ], "keywords": [ "sasaki-einstein metrics", "k-stability", "polarized affine variety admits", "generalizes chen-donaldson-suns solution", "cone metric" ], "note": { "typesetting": "TeX", "pages": 56, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151207213C" } } }