{ "id": "1512.06935", "version": "v1", "published": "2015-12-22T02:48:14.000Z", "updated": "2015-12-22T02:48:14.000Z", "title": "On the expansions of real numbers in two integer bases", "authors": [ "Yann Bugeaud", "Dong Han Kim" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "Let $r \\ge 2$ and $s \\ge 2$ be distinct integers. We establish that, if $r$ and $s$ are multiplicatively independent, then the $r$-ary expansion and the $s$-ary expansion of an irrational real number, viewed as infinite words on $\\{0, 1, \\ldots , r-1\\}$ and $\\{0, 1, \\ldots , s-1\\}$, respectively, cannot have simultaneously a low block complexity. In particular, they cannot be both Sturmian words. We also discuss the case where $r$ and $s$ are multiplicatively dependent.", "revisions": [ { "version": "v1", "updated": "2015-12-22T02:48:14.000Z" } ], "analyses": { "subjects": [ "11A63", "68R15" ], "keywords": [ "integer bases", "ary expansion", "irrational real number", "low block complexity", "infinite words" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151206935B" } } }