{ "id": "1512.06894", "version": "v1", "published": "2015-12-21T22:26:35.000Z", "updated": "2015-12-21T22:26:35.000Z", "title": "The Birch and Swinnerton-Dyer Formula for Elliptic Curves of Analytic Rank One", "authors": [ "Dimitar Jetchev", "Christopher Skinner", "Xin Wan" ], "comment": "51 pages", "categories": [ "math.NT" ], "abstract": "Let $E/\\mathbb{Q}$ be a semistable elliptic curve such that $\\mathrm{ord}_{s=1}L(E,s) = 1$. We prove the $p$-part of the Birch and Swinnerton-Dyer formula for $E/\\mathbb{Q}$ for each prime $p \\geq 5$ of good reduction such that $E[p]$ is irreducible: $$ \\mathrm{ord}_p \\left (\\frac{L'(E,1)}{\\Omega_E\\cdot\\mathrm{Reg}(E/\\mathbb{Q})} \\right ) = \\mathrm{ord}_p \\left (\\#\\mathrm{Sha}(E/\\mathbb{Q})\\prod_{\\ell\\leq \\infty} c_\\ell(E/\\mathbb{Q}) \\right ). $$ This formula also holds for $p=3$ provided $a_p(E)=0$ if $E$ has supersingular reduction at $p$.", "revisions": [ { "version": "v1", "updated": "2015-12-21T22:26:35.000Z" } ], "analyses": { "subjects": [ "11G40", "11G05", "11G07", "11R23", "11G15", "14H52", "14H25" ], "keywords": [ "swinnerton-dyer formula", "analytic rank", "supersingular reduction", "semistable elliptic curve" ], "note": { "typesetting": "TeX", "pages": 51, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151206894J" } } }