{ "id": "1512.06354", "version": "v1", "published": "2015-12-20T11:02:29.000Z", "updated": "2015-12-20T11:02:29.000Z", "title": "Invariants of $G_2$ and $Spin(7)$ in positive characteristic", "authors": [ "A. N. Zubkov", "I. P. Shestakov" ], "comment": "30 pages", "categories": [ "math.RT" ], "abstract": "Invariants of $G_2$ and $Spin(7)$, both acting on several copies of octonions, have been decribed in \\cite{schw2} over a ground field of characteristic zero. In the current manuscript, we extend this result to an arbitrary infinite field of odd characteristic. More precisely, we prove that the corresponding algebras of invariants are generated by the same invariants of degree at most $4$ as in the case of a field of characteristic zero.", "revisions": [ { "version": "v1", "updated": "2015-12-20T11:02:29.000Z" } ], "analyses": { "keywords": [ "invariants", "positive characteristic", "characteristic zero", "arbitrary infinite field", "odd characteristic" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151206354Z" } } }