{ "id": "1512.06236", "version": "v1", "published": "2015-12-19T12:31:39.000Z", "updated": "2015-12-19T12:31:39.000Z", "title": "Weak Dirichlet processes with jumps", "authors": [ "Elena Bandini", "Francesco Russo" ], "categories": [ "math.PR" ], "abstract": "This paper develops systematically stochastic calculus via regularization in the case of jump processes. In particular one continues the analysis of real-valued c\\`adl\\`ag weak Dirichlet processes with respect to a given filtration. Such a process is the sum of a local martingale and an adapted process A such that $[N, A] = 0$, for any continuous local martingale $N$. In particular, given a function $u : [0, T ] \\times \\mathbb{R} \\rightarrow \\mathbb{R}$, which is of class C^{0,1} (or sometimes less), we provide a chain rule type expansion for X\\_t = u(t, X\\_t) which stands in applications for a chain It\\^o type rule.", "revisions": [ { "version": "v1", "updated": "2015-12-19T12:31:39.000Z" } ], "analyses": { "keywords": [ "weak dirichlet processes", "chain rule type expansion", "jump processes", "systematically stochastic calculus", "continuous local martingale" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151206236B" } } }