{ "id": "1512.05992", "version": "v1", "published": "2015-12-18T15:29:55.000Z", "updated": "2015-12-18T15:29:55.000Z", "title": "Borell's formula for a Riemannian manifold and applications", "authors": [ "Joseph Lehec" ], "categories": [ "math.PR" ], "abstract": "Borell's formula is a stochastic variational formula for the log-Laplace transform of a function of a Gaussian vector. We establish an extension of this to the Riemannian setting and give a couple of applications, including a new proof of a convolution inequality on the sphere due to Carlen, Lieb and Loss.", "revisions": [ { "version": "v1", "updated": "2015-12-18T15:29:55.000Z" } ], "analyses": { "keywords": [ "borells formula", "riemannian manifold", "applications", "stochastic variational formula", "log-laplace transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151205992L" } } }