{ "id": "1512.05681", "version": "v1", "published": "2015-12-17T17:24:57.000Z", "updated": "2015-12-17T17:24:57.000Z", "title": "Birational geometry of algebraic varieties, fibred into Fano double spaces", "authors": [ "Aleksandr V. Pukhlikov" ], "comment": "29 pages", "categories": [ "math.AG" ], "abstract": "We develop the quadratic technique of proving birational rigidity of Fano-Mori fibre spaces over a higher-dimensional base. As an application, we prove birational rigidity of generic fibrations into Fano double spaces of dimension $M\\geqslant 4$ and index one over a rationally connected base of dimension at most $\\frac12 (M-2)(M-1)$. An estimate for the codimension of the subset of hypersurfaces of a given degree in the projective space with a positive-dimensional singular set is obtained, which is close to the optimal one.", "revisions": [ { "version": "v1", "updated": "2015-12-17T17:24:57.000Z" } ], "analyses": { "subjects": [ "14E05", "14E07" ], "keywords": [ "fano double spaces", "algebraic varieties", "birational geometry", "positive-dimensional singular set", "fano-mori fibre spaces" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151205681P" } } }