{ "id": "1512.05139", "version": "v1", "published": "2015-12-16T11:46:39.000Z", "updated": "2015-12-16T11:46:39.000Z", "title": "Furstenberg entropy values for nonsingular actions of groups without property (T)", "authors": [ "Alexandre I. Danilenko" ], "categories": [ "math.DS" ], "abstract": "Let $G$ be a discrete countable infinite group that does not have Kazhdan's property ~(T) and let $\\kappa$ be a generating probability measure on $G$. Then for each $t>0$, there is a type $III_1$ ergodic free nonsingular $G$-action whose $\\kappa$-entropy (or the Furstenberg entropy) is $t$.", "revisions": [ { "version": "v1", "updated": "2015-12-16T11:46:39.000Z" } ], "analyses": { "subjects": [ "37A40", "37A20", "37A35" ], "keywords": [ "furstenberg entropy values", "nonsingular actions", "ergodic free nonsingular", "discrete countable infinite group", "generating probability measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151205139D" } } }