{ "id": "1512.04760", "version": "v1", "published": "2015-12-15T12:36:26.000Z", "updated": "2015-12-15T12:36:26.000Z", "title": "Complete hypersurfaces in Euclidean spaces with strong finite total curvature", "authors": [ "Manfredo do Carmo", "Maria Fernanda Elbert" ], "categories": [ "math.DG" ], "abstract": "We prove that strong finite total curvature complete hypersurfaces of (n+1)-euclidean space are proper and diffeomorphic to a compact manifold minus finitely many points. With an additional condition, we also prove that the Gauss map of such hypersurfaces extends continuously to the punctures.", "revisions": [ { "version": "v1", "updated": "2015-12-15T12:36:26.000Z" } ], "analyses": { "subjects": [ "57R42", "53C42" ], "keywords": [ "euclidean spaces", "strong finite total curvature complete", "finite total curvature complete hypersurfaces", "compact manifold minus", "hypersurfaces extends" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }