{ "id": "1512.04691", "version": "v1", "published": "2015-12-15T09:35:49.000Z", "updated": "2015-12-15T09:35:49.000Z", "title": "Norms of indecomposable integers in real quadratic fields", "authors": [ "Vítězslav Kala" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "We study totally positive, additively indecomposable integers in a real quadratic field $\\mathbb Q(\\sqrt D)$. We estimate the size of the norm of an indecomposable integer by expressing it as a power series in $u_i^{-1}$, where $\\sqrt D$ has the periodic continued fraction expansion $[u-0, \\bar{u_1, u_2, \\dots, u_{s-1}, 2u-0}]$. This enables us to find a counterexample to a conjecture of Jang-Kim [JK] concerning the maximal size of the norm of an indecomposable integer.", "revisions": [ { "version": "v1", "updated": "2015-12-15T09:35:49.000Z" } ], "analyses": { "subjects": [ "11R11", "11A55" ], "keywords": [ "real quadratic field", "periodic continued fraction expansion", "power series", "additively indecomposable integers" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151204691K" } } }