{ "id": "1512.04347", "version": "v1", "published": "2015-12-14T14:54:02.000Z", "updated": "2015-12-14T14:54:02.000Z", "title": "A `relative' local Langlands correspondence", "authors": [ "Dipendra Prasad" ], "categories": [ "math.NT", "math.RT" ], "abstract": "For $E/F$ quadratic extension of local fields and $G$ a reductive algebraic group over $F$, the paper formulates a conjecture classifying irreducible admissible representations of $G(E)$ which carry a $G(F)$ invariant linear form, and the dimension of the space of these invariant forms, in terms of the Langlands parameter of the representation. The paper studies parameter spaces of Langlands parameters, and morphisms between them associated to morphisms of $L$-groups. The conjectural answer to the question on the space of $G(F)$-invariant linear forms is in terms of fibers of a particular finite map between parameter spaces.", "revisions": [ { "version": "v1", "updated": "2015-12-14T14:54:02.000Z" } ], "analyses": { "keywords": [ "local langlands correspondence", "invariant linear form", "classifying irreducible admissible representations", "langlands parameter", "paper studies parameter spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151204347P" } } }