{ "id": "1512.03183", "version": "v1", "published": "2015-12-10T09:23:21.000Z", "updated": "2015-12-10T09:23:21.000Z", "title": "On the Fourier transform of function of two variables which depend only on the maximum of these variables", "authors": [ "R. M. Trigub" ], "comment": "30 pages; the paper is in Russian, with the title, abstract and key words translated", "categories": [ "math.CA" ], "abstract": "For functions $f(x_{1},x_{2})=f_{0}\\big(\\max\\{|x_{1}|,|x_{2}|\\}\\big)$ from $L_{1}(\\mathbb{R}^{2})$, sufficient and necessary conditions for the belonging of their Fourier transform $\\widehat{f}$ to $L_{1}(\\mathbb{R}^{2})$ as well as of a function $t\\cdot \\sup\\limits_{y_{1}^{2}+y_{2}^{2}\\geq t^{2}}\\big|\\widehat{f}(y_{1},y_{2})\\big|$ to $L_{1}(\\mathbb{R}^{1}_{+})$. As for the positivity of $\\widehat{f}$ on $\\mathbb{R}^{2}$, it is completely reduced to the same question on $\\mathbb{R}^{1}$ for a function $f_{1}(x)=|x|f_{0}\\big(|x|\\big)+\\int\\limits_{|x|}^{\\infty}f_{0}(t)dt$.", "revisions": [ { "version": "v1", "updated": "2015-12-10T09:23:21.000Z" } ], "analyses": { "subjects": [ "42B10" ], "keywords": [ "fourier transform", "necessary conditions", "positivity" ], "note": { "typesetting": "TeX", "pages": 30, "language": "ru", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151203183T" } } }