{ "id": "1512.02915", "version": "v1", "published": "2015-12-09T16:00:10.000Z", "updated": "2015-12-09T16:00:10.000Z", "title": "Liouville Type Theorem for Stationary Navier-Stokes Equations", "authors": [ "Gregory Seregin" ], "comment": "7 pages", "categories": [ "math.AP" ], "abstract": "It is shown that any smooth solution to the stationary Navier-Stokes system in $R^3$ with the velocity field, belonging globally to $L_6$ and $BM0^{-1}$, must be zero.", "revisions": [ { "version": "v1", "updated": "2015-12-09T16:00:10.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D05" ], "keywords": [ "liouville type theorem", "stationary navier-stokes equations", "stationary navier-stokes system", "smooth solution", "velocity field" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151202915S" } } }