{ "id": "1512.02790", "version": "v1", "published": "2015-12-09T08:53:29.000Z", "updated": "2015-12-09T08:53:29.000Z", "title": "Mixing time for the random walk on the range of the random walk on tori", "authors": [ "Jiří Černý", "Artem Sapozhnikov" ], "comment": "11 pages", "categories": [ "math.PR" ], "abstract": "Consider the subgraph of the discrete $d$-dimensional torus of size length $N$, $d\\ge3$, induced by the range of the simple random walk on the torus run until the time $uN^d$. We prove that for all $d\\ge 3$ and $u>0$, the mixing time for the random walk on this subgraph is of order $N^2$ with probability at least $1 - Ce^{-(\\log N)^2}$.", "revisions": [ { "version": "v1", "updated": "2015-12-09T08:53:29.000Z" } ], "analyses": { "subjects": [ "60K37", "58J35" ], "keywords": [ "mixing time", "simple random walk", "dimensional torus", "torus run", "size length" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }