{ "id": "1512.02026", "version": "v1", "published": "2015-12-07T13:00:46.000Z", "updated": "2015-12-07T13:00:46.000Z", "title": "A higher dimensional generalization of Lichtenbaum duality in terms of the Albanese map", "authors": [ "Wataru Kai" ], "comment": "19 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We present a conjectural formula describing the cokernel of the Albanese map of zero-cycles of smooth projective varieties $X$ over $p$-adic fields in terms of the N\\'eron-Severi group and provide a proof under additional assumptions on an integral model of $X$. The proof depends on a non-degeneracy result of Brauer-Manin pairing due to Saito-Sato and on Gabber-de Jong's comparison result of cohomological- and Azumaya-Brauer groups. We can consider the local-global problem of the Albanese-cokernel; the abelian group on the \"local side\" turns out to be a finite group.", "revisions": [ { "version": "v1", "updated": "2015-12-07T13:00:46.000Z" } ], "analyses": { "keywords": [ "higher dimensional generalization", "albanese map", "lichtenbaum duality", "gabber-de jongs comparison result", "azumaya-brauer groups" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }