{ "id": "1512.01191", "version": "v1", "published": "2015-12-03T19:03:56.000Z", "updated": "2015-12-03T19:03:56.000Z", "title": "A note on the Borwein conjecture", "authors": [ "Jiyou Li" ], "comment": "9 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "The Borwein conjecture asserts that for any positive integer $n$ and $k$, the coefficient $a_{3k}$ of $q^{3k}$ in the expansion of $\\prod_{j=0}^n (1-q^{3j+1})(1-q^{3j+2})$ is nonnegative. In this note we prove that for any $k\\leq n$, $$a_{3k}+a_{3(n+1)+3k}+\\cdots+a_{3n(n+1)+3k}>0.$$", "revisions": [ { "version": "v1", "updated": "2015-12-03T19:03:56.000Z" } ], "analyses": { "keywords": [ "borwein conjecture asserts", "positive integer", "coefficient" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }