{ "id": "1512.01128", "version": "v1", "published": "2015-12-01T08:38:53.000Z", "updated": "2015-12-01T08:38:53.000Z", "title": "A note on the exponential sums of the localized divisor functions", "authors": [ "Giovanni Coppola", "Maurizio Laporta" ], "comment": "Four pages, Plain TeX", "categories": [ "math.NT" ], "abstract": "We prove an upper bound for the exponential sum associated to a localized $k-$divisor function, i.e., the counting function of the number of ways to write a positive integer $n$ as a product of $k\\ge 2$ positive integers, each of them belonging to a specified interval. In particular, this gives an estimate for the exponential sum for the $k-$divisor function, $d_k(n)$.", "revisions": [ { "version": "v1", "updated": "2015-12-01T08:38:53.000Z" } ], "analyses": { "subjects": [ "11L07", "11N99" ], "keywords": [ "exponential sum", "localized divisor functions", "positive integer", "upper bound", "counting function" ], "note": { "typesetting": "Plain TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151201128C" } } }