{ "id": "1511.08930", "version": "v1", "published": "2015-11-28T21:11:09.000Z", "updated": "2015-11-28T21:11:09.000Z", "title": "Formality of 7-dimensional 3-Sasakian manifolds", "authors": [ "Marisa Fernández", "Stefan Ivanov", "Vicente Muñoz" ], "comment": "10 pages", "categories": [ "math.DG" ], "abstract": "We prove that any simply connected compact 3-Sasakian manifold, of dimension seven, is formal if and only if its second Betti number is $b_2<2$. In the opposite, we show an example of a 7-dimensional Sasaki-Einstein manifold, with second Betti number $b_2\\geq 2$, which is formal. Therefore, such an example does not admit any 3-Sasakian structure. Examples of 7-dimensional simply connected compact formal Sasakian manifolds, with $b_2\\geq 2$, are also given.", "revisions": [ { "version": "v1", "updated": "2015-11-28T21:11:09.000Z" } ], "analyses": { "subjects": [ "53C25", "55S30", "55P62" ], "keywords": [ "second betti number", "connected compact formal sasakian manifolds", "simply connected compact formal sasakian", "sasaki-einstein manifold", "dimension seven" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151108930F" } } }