{ "id": "1511.08890", "version": "v1", "published": "2015-11-28T11:03:51.000Z", "updated": "2015-11-28T11:03:51.000Z", "title": "Stability properties of the regular set for the Navier--Stokes equation", "authors": [ "Renato LucĂ ", "Piero D'Ancona" ], "comment": "41 pages", "categories": [ "math.AP" ], "abstract": "We investigate the size of the regular set for small perturbations of some classes of strong large solutions to the Navier--Stokes equation. We consider perturbations of the data which are small in suitable weighted $L^{2}$ spaces but can be arbitrarily large in any translation invariant critical Banach space. We give similar results in the small data setting.", "revisions": [ { "version": "v1", "updated": "2015-11-28T11:03:51.000Z" } ], "analyses": { "subjects": [ "35Q30", "35K55" ], "keywords": [ "navier-stokes equation", "regular set", "stability properties", "translation invariant critical banach space", "strong large solutions" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151108890L" } } }