{ "id": "1511.08545", "version": "v1", "published": "2015-11-27T03:03:14.000Z", "updated": "2015-11-27T03:03:14.000Z", "title": "Koszul complexes, Birkhoff normal form and the magnetic Dirac operator", "authors": [ "Nikhil Savale" ], "categories": [ "math.AP", "math.DG", "math.SP" ], "abstract": "We consider the semi-classical Dirac operator coupled to a magnetic potential on a large class of manifolds including all metric contact manifolds. We prove a sharp local Weyl law and a bound on its eta invariant. In the absence of a Fourier integral parametrix, the method relies on the use of almost analytic continuations combined with the Birkhoff normal form and local index theory.", "revisions": [ { "version": "v1", "updated": "2015-11-27T03:03:14.000Z" } ], "analyses": { "subjects": [ "35P20", "81Q20", "58J40", "58J28" ], "keywords": [ "birkhoff normal form", "magnetic dirac operator", "koszul complexes", "sharp local weyl law", "fourier integral parametrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }