{ "id": "1511.07751", "version": "v1", "published": "2015-11-24T15:25:36.000Z", "updated": "2015-11-24T15:25:36.000Z", "title": "Higgs bundles, Toledo invariant and the Cayley correspondence", "authors": [ "Olivier Biquard", "Oscar Garcia-Prada", "Roberto Rubio" ], "categories": [ "math.DG" ], "abstract": "We define the Toledo invariant of a G-Higgs bundles on a Riemann surface, where G is a real semisimple group of Hermitian type, and we prove a Milnor-Wood type bound for this invariant when the bundle is semistable. We prove rigidity results when the Toledo invariant is maximal, establishing in particular a Cayley correspondence when the symmetric space defined by G is of tube type. This gives a new proof of the Milnor-Wood inequality of Burger-Iozzi-Wienhard for representations of the fundamental group of a Riemann surface into G. Compared to previous results using Higgs bundles, it uses general theory and avoids any case by case study.", "revisions": [ { "version": "v1", "updated": "2015-11-24T15:25:36.000Z" } ], "analyses": { "subjects": [ "14H60", "57R57", "58D29" ], "keywords": [ "toledo invariant", "higgs bundles", "cayley correspondence", "riemann surface", "real semisimple group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151107751B" } } }