{ "id": "1511.07598", "version": "v1", "published": "2015-11-24T07:31:13.000Z", "updated": "2015-11-24T07:31:13.000Z", "title": "Littlewood-Paley Characterizations of Fractional Sobolev Spaces via Averages on Balls", "authors": [ "Feng Dai", "Jun Liu", "Dachun Yang", "Wen Yuan" ], "comment": "29 pages, Submitted", "categories": [ "math.CA", "math.FA" ], "abstract": "In this paper, the authors characterize Sobolev spaces $W^{\\alpha,p}({\\mathbb R}^n)$ with the smoothness order $\\alpha\\in(0,2]$ and $p\\in(\\max\\{1, \\frac{2n}{2\\alpha+n}\\},\\infty)$, via the Lusin area function and the Littlewood-Paley $g_\\lambda^\\ast$-function in terms of centered ball averages. The authors also show that the condition $p\\in(\\max\\{1, \\frac{2n}{2\\alpha+n}\\},\\infty)$ is nearly sharp in the sense that these characterizations are no longer true when $p\\in (1,\\max\\{1, \\frac{2n}{2\\alpha+n}\\})$. These characterizations provide a new possible way to introduce fractional Sobolev spaces with smoothness order in $(1,2]$ on metric measure spaces.", "revisions": [ { "version": "v1", "updated": "2015-11-24T07:31:13.000Z" } ], "analyses": { "subjects": [ "46E35", "42B25", "42B20", "42B35" ], "keywords": [ "fractional sobolev spaces", "littlewood-paley characterizations", "smoothness order", "metric measure spaces", "authors characterize sobolev spaces" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }