{ "id": "1511.07464", "version": "v1", "published": "2015-11-23T21:16:15.000Z", "updated": "2015-11-23T21:16:15.000Z", "title": "On the Poisson equation for Metropolis-Hastings chains", "authors": [ "Aleksandar Mijatovic", "Jure Vogrinc" ], "comment": "34 pages, 2 figures", "categories": [ "math.PR", "stat.ME" ], "abstract": "This paper defines an approximation scheme for a solution of the Poisson equation of a geometrically ergodic Metropolis-Hastings chain $\\Phi$. The approximations give rise to a natural sequence of control variates for the ergodic average $S_k(F)=(1/k)\\sum_{i=1}^{k} F(\\Phi_i)$, where $F$ is the force function in the Poisson equation. The main result of the paper shows that the sequence of the asymptotic variances (in the CLTs for the control-variate estimators) converges to zero. We apply the algorithm to geometrically and non-geometrically ergodic chains and present numerical evidence for a significant variance reduction in both cases.", "revisions": [ { "version": "v1", "updated": "2015-11-23T21:16:15.000Z" } ], "analyses": { "subjects": [ "60J10", "60J22" ], "keywords": [ "poisson equation", "geometrically ergodic metropolis-hastings chain", "significant variance reduction", "paper defines", "approximation scheme" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151107464M" } } }