{ "id": "1511.07298", "version": "v1", "published": "2015-11-23T16:27:33.000Z", "updated": "2015-11-23T16:27:33.000Z", "title": "On the distribution of Hecke eigenvalues for cuspidal automorphic representations for GL(2)", "authors": [ "Nahid Walji" ], "comment": "12 pages. Comments welcome", "categories": [ "math.NT" ], "abstract": "Given a self-dual cuspidal automorphic representation for GL(2) over a number field, we establish the existence of an infinite number of Hecke eigenvalues that are greater than an explicit positive constant, and an infinite number of Hecke eigenvalues that are less than an explicit negative constant. This provides an answer to a question of Serre. We also consider analogous problems for cuspidal automorphic representations that are not self-dual.", "revisions": [ { "version": "v1", "updated": "2015-11-23T16:27:33.000Z" } ], "analyses": { "keywords": [ "hecke eigenvalues", "distribution", "infinite number", "self-dual cuspidal automorphic representation", "number field" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }