{ "id": "1511.07140", "version": "v1", "published": "2015-11-23T09:04:47.000Z", "updated": "2015-11-23T09:04:47.000Z", "title": "On a cubic moment of Hardy's function with a shift", "authors": [ "Aleksandar Ivić" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "An asymptotic formula for $$ \\int_{T/2}^{T}Z^2(t)Z(t+U)\\,dt\\qquad(0< U = U(T) \\le T^{1/2-\\varepsilon}) $$ is derived, where $$ Z(t) := \\zeta(1/2+it){\\bigl(\\chi(1/2+it)\\bigr)}^{-1/2}\\quad(t\\in\\Bbb R), \\quad \\zeta(s) = \\chi(s)\\zeta(1-s) $$ is Hardy's function. The cubic moment of $Z(t)$ is also discussed, and a mean value result is presented which supports the author's conjecture that $$ \\int_1^TZ^3(t)\\,dt \\;=\\;O_\\varepsilon(T^{3/4+\\varepsilon}). $$", "revisions": [ { "version": "v1", "updated": "2015-11-23T09:04:47.000Z" } ], "analyses": { "subjects": [ "11M06", "11N37" ], "keywords": [ "hardys function", "cubic moment", "mean value result", "authors conjecture" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151107140I" } } }