{ "id": "1511.06893", "version": "v1", "published": "2015-11-21T15:52:12.000Z", "updated": "2015-11-21T15:52:12.000Z", "title": "On self-affine measures with equal Hausdorff and Lyapunov dimensions", "authors": [ "Ariel Rapaport" ], "categories": [ "math.DS" ], "abstract": "Let $\\mu$ be a self-affine measure on $\\mathbb{R}^{d}$ associated to a self-affine IFS $\\{\\varphi_{\\lambda}(x) = A_{\\lambda}x + v_{\\lambda}\\}_{\\lambda\\in\\Lambda}$ and a probability vector $p=(p_{\\lambda})_{\\lambda}>0$. Assume the strong separation condition holds. Let $\\gamma_{1}\\ge...\\ge\\gamma_{d}$ and $D$ be the Lyapunov exponents and dimension corresponding to $\\{A_{\\lambda}\\}_{\\lambda\\in\\Lambda}$ and $p^{\\mathbb{N}}$, and let $\\mathbf{G}$ be the group generated by $\\{A_{\\lambda}\\}_{\\lambda\\in\\Lambda}$. We show that if $\\gamma_{m+1}>\\gamma_{m}=...=\\gamma_{d}$, if $\\mathbf{G}$ acts irreducibly on the vector space of alternating $m$-forms, and if the Furstenberg measure $\\mu_{F}$ satisfies $\\dim_{H}\\mu_{F}+D>(m+1)(d-m)$, then $\\mu$ is exact dimensional with $\\dim\\mu=D$.", "revisions": [ { "version": "v1", "updated": "2015-11-21T15:52:12.000Z" } ], "analyses": { "subjects": [ "37C45", "28A80" ], "keywords": [ "self-affine measure", "equal hausdorff", "lyapunov dimensions", "strong separation condition holds", "vector space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151106893R" } } }