{ "id": "1511.06868", "version": "v1", "published": "2015-11-21T11:35:33.000Z", "updated": "2015-11-21T11:35:33.000Z", "title": "Decay of correlation for expanding toral endomorphisms", "authors": [ "Ai Hua Fan" ], "categories": [ "math.DS" ], "abstract": "Let $A$ be an expanding endomorphism on the torus ${\\Bbb T}^d = {\\Bbb R}^d /{\\Bbb Z}^d$ with its smallest eigenvalue $\\lambda >1$. Consider the ergodic system $({\\Bbb T}^d, A, \\mu)$ where $\\mu$ is Haar measure. We prove that the correlation $\\rho_{f, g}(n)$ of a pair of functions $f, g \\in L^2(\\mu)$ is controlled by the modulus of $L^2$-continuity $\\Omega_{f, 2}(\\lambda^{-n})$ and that the estimate is to some extent optimal. We also prove the central limit theorem for the stationary process $f(A^n x)$ defined by a function $f$ satisfying $\\Sigma_n \\Omega_{f,2}(\\lambda^{-n}) <\\infty$. An application is given to the Ulam-von Neumann system.", "revisions": [ { "version": "v1", "updated": "2015-11-21T11:35:33.000Z" } ], "analyses": { "keywords": [ "expanding toral endomorphisms", "correlation", "ulam-von neumann system", "central limit theorem", "smallest eigenvalue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }