{ "id": "1511.06824", "version": "v1", "published": "2015-11-21T03:40:32.000Z", "updated": "2015-11-21T03:40:32.000Z", "title": "Zero-density estimates for Epstein zeta function", "authors": [ "Steven Gonek", "Yoonbok Lee" ], "categories": [ "math.NT" ], "abstract": "We investigate the zeros of Epstein zeta functions associated with a positive definite quadratic form with rational coefficients in the vertical strip $ \\sigma_1 < \\Re s < \\sigma_2 $, where $ 1/2 < \\sigma_1 < \\sigma_2 < 1 $. When the class number of the quadratic form is bigger than 1, Voronin gives a lower bound and Lee gives an asymptotic formula for the number of zeros. In this paper, we improve their results by providing a new upper bound for the error term.", "revisions": [ { "version": "v1", "updated": "2015-11-21T03:40:32.000Z" } ], "analyses": { "keywords": [ "epstein zeta function", "zero-density estimates", "positive definite quadratic form", "class number", "rational coefficients" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151106824G" } } }