{ "id": "1511.06478", "version": "v1", "published": "2015-11-20T03:02:10.000Z", "updated": "2015-11-20T03:02:10.000Z", "title": "Every finite set of integers is an asymptotic approximate group", "authors": [ "Melvyn B. Nathanson" ], "comment": "7 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "A set $A$ is an $(r,\\ell)$-approximate group in the additive abelian group $G$ if $A$ is a nonempty subset of $G$ and there exists a subset $X$ of $G$ such that $|X| \\leq \\ell$ and $rA \\subseteq X+A$. The set $A$ is an asymptotic $(r,\\ell)$-approximate group if the sumset $hA$ is an $(r,\\ell)$-approximate group for all sufficiently large integers $h$. It is proved that every finite set of integers is an asymptotic $(r,r+1)$-approximate group for every integer $r \\geq 2$.", "revisions": [ { "version": "v1", "updated": "2015-11-20T03:02:10.000Z" } ], "analyses": { "subjects": [ "11B13", "05A17", "11B75", "11P99" ], "keywords": [ "asymptotic approximate group", "finite set", "additive abelian group", "nonempty subset", "sufficiently large integers" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151106478N" } } }