{ "id": "1511.06054", "version": "v1", "published": "2015-11-19T03:56:13.000Z", "updated": "2015-11-19T03:56:13.000Z", "title": "Quantum Teichmüller spaces and quantum trace map", "authors": [ "Thang T. Q. Le" ], "comment": "35 pages", "categories": [ "math.GT" ], "abstract": "We show how the quantum trace map of Bonahon and Wong can be constructed in a natural way using the skein algebra of Muller, which is an extension of the Kauffman bracket skein algebra of surfaces. We also show that the quantum Teichm\\\"uller space of a marked surface, defined by Chekhov-Fock (and Kashaev) in an abstract way, can be realized as a concrete subalgebra of the skew field of the skein algebra.", "revisions": [ { "version": "v1", "updated": "2015-11-19T03:56:13.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "quantum trace map", "quantum teichmüller spaces", "kauffman bracket skein algebra", "natural way", "abstract way" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151106054L", "inspire": 1405506 } } }