{ "id": "1511.05976", "version": "v1", "published": "2015-11-18T21:04:12.000Z", "updated": "2015-11-18T21:04:12.000Z", "title": "Stratifying systems over the hereditary path algebra with quiver $\\mathbb{A}_{p,q}$", "authors": [ "Paula Andrea Cadavid", "Eduardo do Nascimento Marcos" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1308.5547", "doi": "10.1007/s40863-015-0029-x", "categories": [ "math.RT" ], "abstract": "The authors have proved in [J. Algebra Appl. 14 (2015), no. 6] that the size of a stratifying system over a finite-dimensional hereditary path algebra $A$ is at most $n$, where $n$ is the number of isomorphism classes of simple $A$-modules. Moreover, if $A$ is of Euclidean type a stratifying system over $A$ has at most $n-2$ regular modules. In this work, we construct a family of stratifying systems of size $n$ with a maximal number of regular elements, over the hereditary path algebra with quiver $\\widetilde{\\mathbb {A}}_{p,q} $, canonically oriented.", "revisions": [ { "version": "v1", "updated": "2015-11-18T21:04:12.000Z" } ], "analyses": { "subjects": [ "16G10", "16G70" ], "keywords": [ "stratifying system", "finite-dimensional hereditary path algebra", "regular elements", "regular modules", "algebra appl" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151105976C" } } }