{ "id": "1511.05793", "version": "v1", "published": "2015-11-18T14:14:06.000Z", "updated": "2015-11-18T14:14:06.000Z", "title": "Cusp forms for reductive symmetric spaces of split rank one", "authors": [ "Erik P. van den Ban", "Job J. Kuit" ], "comment": "76 pages", "categories": [ "math.RT" ], "abstract": "For reductive symmetric spaces G/H of split rank one we identify a class of minimal parabolic subgroups for which certain cuspidal integrals of Harish-Chandra - Schwartz functions are absolutely convergent. Using these integrals we introduce a notion of cusp forms and investigate its relation with representations of the discrete series for G/H.", "revisions": [ { "version": "v1", "updated": "2015-11-18T14:14:06.000Z" } ], "analyses": { "subjects": [ "22E30", "22E45" ], "keywords": [ "split rank", "cusp forms", "reductive symmetric spaces g/h", "minimal parabolic subgroups", "cuspidal integrals" ], "note": { "typesetting": "TeX", "pages": 76, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151105793V" } } }