{ "id": "1511.05792", "version": "v1", "published": "2015-11-18T14:13:15.000Z", "updated": "2015-11-18T14:13:15.000Z", "title": "Ledrappier-Young formula and exact dimensionality of self-affine measures", "authors": [ "Balázs Bárány", "Antti Käenmäki" ], "categories": [ "math.DS" ], "abstract": "In this paper, we solve the long standing open problem on exact dimensionality of self-affine measures. We show that every self-affine measure on the plane is exact dimensional regardless of the choice of the defining iterated function system. In higher dimensions, under certain assumptions, we prove that quasi self-affine measures are exact dimensional. In both cases, the measures satisfy the Ledrappier-Young formula.", "revisions": [ { "version": "v1", "updated": "2015-11-18T14:13:15.000Z" } ], "analyses": { "subjects": [ "37C45", "28A80" ], "keywords": [ "exact dimensionality", "ledrappier-young formula", "long standing open problem", "quasi self-affine measures", "defining iterated function system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151105792B" } } }