{ "id": "1511.05214", "version": "v1", "published": "2015-11-16T23:13:36.000Z", "updated": "2015-11-16T23:13:36.000Z", "title": "Quantitative coarse embeddings of quasi-Banach spaces into a Hilbert space", "authors": [ "Michal Kraus" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "We study how well a quasi-Banach space can be coarsely embedded into a Hilbert space. Given any quasi-Banach space X which coarsely embeds into a Hilbert space, we compute its Hilbert space compression exponent. We also show that the Hilbert space compression exponent of X is equal to the supremum of the amounts of snowflakings of X which admit a bi-Lipschitz embedding into a Hilbert space.", "revisions": [ { "version": "v1", "updated": "2015-11-16T23:13:36.000Z" } ], "analyses": { "subjects": [ "46B20", "46A16", "51F99", "46B85" ], "keywords": [ "quasi-banach space", "quantitative coarse embeddings", "hilbert space compression exponent", "coarsely embeds", "snowflakings" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151105214K" } } }