{ "id": "1511.05075", "version": "v1", "published": "2015-11-16T18:25:16.000Z", "updated": "2015-11-16T18:25:16.000Z", "title": "A long $\\mathbb C^2$ without holomorphic functions", "authors": [ "Luka Boc Thaler", "Franc Forstneric" ], "categories": [ "math.CV" ], "abstract": "For every integer $n>1$ we construct a complex manifold of dimension $n$ which is exhausted by an increasing sequence of biholomorphic images of $\\mathbb C^n$ (i.e., a long $\\mathbb C^n$), but it does not admit any nonconstant holomorphic functions. We also introduce new biholomorphic invariants of a complex manifold, the stable core and the strongly stable core, and prove that every compact strongly pseudoconvex polynomially convex domain $B\\subset \\mathbb C^n$ is the strongly stable core of a long $\\mathbb C^n$; in particular, non-equivalent domains give rise to non-equivalent long $\\mathbb C^n$'s. Furthermore, we show that for any open set $U\\subset \\mathbb C^n$ there exists a long $\\mathbb C^n$ whose stable core is dense in $U$. Thus, for any $n>1$ there exist uncountably many pairwise non-equivalent long $\\mathbb C^n$'s.These results answer several long standing open problems.", "revisions": [ { "version": "v1", "updated": "2015-11-16T18:25:16.000Z" } ], "analyses": { "subjects": [ "32E10", "32E30", "32H02" ], "keywords": [ "complex manifold", "strongly stable core", "non-equivalent long", "nonconstant holomorphic functions", "long standing open problems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }